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ABSTRACT 
The present author has proposed unified principle of virtual work and complementary virtual 
work quite recently (1),(2). 
It was found using the divergence theorem in elasticity that twice of the strain energy to be 
stored in an elastic body is equal to sum of work done (potential) due to not only a given 
body force, surface traction acting on the stress boundary but also the enforced displacement 
on the displacement boundary. 
 
Then using this obvious relation, a new stationary energy principle can be proposed which 
unifies the principles of virtual work and complementary virtual work. In case of the linear 
elasticity problems, it becomes the minimum principle of total energy of a given elastic 
system which is sum of potential and complementary energy of the said system. It can be 
also shown that the lower bound solution of the same system can be always obtained using 
this new principle with the displacement function which satisfies the equation of 
equilibrium. 
 
1. Introduction 
According to historical survey (8),(9), the principle of minimum potential energy was 
formulated by J. Willard Gibbs in 1875 and the complementary energy concept was 
introduced by F. Z. Engesser in 1889. It is well known that the former can give the upper 
bound solution, while the later can give the lower bound solution of the true solutions in 
elasticity problems. It is very strange that both principles were independently proposed and 
because of easier usage, the former has been well established by the middle of last century. 
Jon Turners’ paper on the Direct Stiffness Method published in 1956 has become the origin 
of the present finite element method where the element displacement functions are assumed 
unknown (5),(6) .  
In early stage of the finite element displacement, around 1950’s, however, the force method 
(equilibrium method) existed together where element forces are assumed unknowns. 
However due to rapid development of the Displacement Method, the Force Method declined 
quickly and today the displacement method represents almost all of the finite element 
method. 
--------------------------------------------------------------------------------------------------------------- 

Superscript () implies the number of literature quoted in the reference. 
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In 1965 B. M. Fraeijs de Veubeke (4) discussed the variational basis of the finite element 
method from both DM and FM standpoint of view, and he developed a general variational 
principle combining the potential energy and the dislocation potential which he gave the 
name. 
Almost at the same time T. H. H. Pian (3),(5) developed the hybrid or mixed variational 
methods to establish a unified basis of the finite element method. 
Both methods, however, are based on Hellinger-Reissner’s variational principle and 
therefore they can only give the stationary solution. And the mathematical basis 
(convergency studies and error estimate) of the finite element method is considered well 
established. It is, however, the Displacement Method which can only give the upper bound 
of true solutions. 
Consequently it is obvious that restoration of the Force Method is imperative because it can 
give always the lower bound of the true solutions. 
 
This is motivation of my research by which accuracy of approximate solution can be 
correctly estimated. For this purpose the author challenged on the development of the 
unified energy principle without using Lagrange multiplier. 
2. Development of the unified principle of virtual work and complementary virtual 
work 
Consider arbitrary sets of stress components ij

!  and strain components ij
!  of any solid 

subjected to external loading and enforced displacement. ij
!  are assumed to satisfy the 

following equation of equilibrium and the stress boundary condition: 

Vpijij in0, =+!  (1) 

where 
i
p  is a given body force vector and V  is the volume of a given body and 

!
!= Snt jiji on  (2) 

where 
i
n  is the unit normal drawn outward on the stress boundary 

!
S , 

i
t  is the traction 

vector on 
!
S . (See Fig.1) 

The strain ij
!  is assumed to be derived from the displacement using eq (3), and the 

displacement 
i
u  is also assumed to satisfy the displacement boundary condition (4) as 

follows: 

( )
ijjiij

uu
,,

2

1
+=!  (3) 

uii
Suu on=  (4) 

where 
u
SSS +=

!
, 

u
S  is the displacement boundary. 

Using eq (3) and applying the well-known divergence theorem it is not too difficult to derive 
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the following equation: 

!!! "#=$"
V

ijij
S

ii
V

ijij dVudSutdV
,

 (5) 

Applying eqs (1), (2) and (4) to eq(5), the following equation can be derived. 

!!!! ++="#
# uS

ii
S

ii
V

ii
V

ijij dStudSutdVupdV  (6) 

It should be mentioned here that this equation is true irrespective of the stress-strain relation 
and size of 

i
u  and ij

!  and from which the following equation can be derived: 

!!!!!! "+"+"="#$+"$#=$#"
# uS

ii
S

ii
V

ii
V

ijij
V

ijij
V

ijij dStudSutdVupdVdVdV  

That is, in weak form: 

0=!"!"!"#$! %%%%
$ uS

ii
S

ii
V

ii
V

ijij dStudSutdVupdV  (7-a) 

or in strong form 

0=!
"
#$

%
& '(')*+!

"
#$

%
& '('('*) +++++

) uS
ii

V
ijij

S
ii

V
ii

V
ijij dStudVdSutdVupdV  (7-b) 

Eq (7-a,b) may be unified principle of the virtual work and complementary virtual work. 
(Fig. 2) Namely, if 

i
u  and ij

!  are true solutions, the following two variational equations 
can be realized: 
(a) the principle of virtual work 

( )i
S

ii
V

ii
V

ijij udSutdVupdV w.r.t.0=!"!"!#$ %%%
$

 (8) 

(b) the principle of complementary virtual work 

( )ij
S

ii
V

ijij
u

dStudV !="#"!$ %% w.r.t.0  (9) 

Therefore eq (7-a) is proved. 
Conversely if eq (7-a) is true eq (7-b) is also true with respect to 

i
u  and ij

! . 
Since 

i
u  and ij

!  are assumed independently eqs (8) and (9) must be realized 
simultaneously. 
Process for proposing the unified principle of virtual work and complementary virtual work 
may be illustrated in the following Fig. 2. 
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3. Proposition of the unified principle of total energy in the linear elasticity 
If ij

!  and ij
!  are related by the following linear relation: 

klijklijklijklij ba !=""=! or  (10) 

where ijkla  and ijklb  are symmetric matrices, eq (6) expresses the law of energy 
conservation. 
Now consider the following total energy of an elastic system as defined by 

( ) WUu
it

!="  (11) 

where CC
V

ijij VVVVdVU 22 ==+=!"= #  (12-a) 

      
!
!
"

!!
#

$

%%=%&=

&&=&%=

''

''

V
klijijkl

V
ijijC

V
klijijkl

V
ijij

dVbdVV

dVadVV

2

1

2

1

2

1

2

1

 (12-b) 

and  cp WWW +=  (13-a) 

     !!
"

+=
S

ii
V

iip dSutdVupW  (13-b) 

    !=
uS

iic
dStuW  (13-c) 

Then eq (11) can be written as follows: 

( ) ( ) ( )
icipit
uuu !+!=!  (14-a) 

where ( ) ( ) ( ) !!!
"

##$"=#=%
S

ii
V

ii
V

ijijipipip dSutdVupdVuWuVu
2

1  (14-b) 

      
( ) ( ) ( ) !! "#$=#"#=#%

u
S

ii
V

ijijijcijcijc
dStudVVV

2

1
W
c  (14-c) 

It should be mentioned here that the complementary energy 
c

!  is originally defined with 
respect to ij

! , but now it is a function of 
i
u  because ij

!  is a linear function of 
i
u  via eqs 

(3) and (10). 
Therefore it can be concluded that if 

i
u  is the true solution, by the minimum principle of 

potential and complementary energy, the following conclusion can be drawn: 

( )
iit
uu w.r.t.min!"  (15) 

Conversely consider the case where ( )
it
u!  becomes minimum with respect to 

i
u . 

Since ( )
it
u!  is sum of two positive functional ( )

ip
u!  and ( )

ic
u! , if at least any one of 
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theme does not become minimum, then ( )
it
u!  can not become minimum, Q.E.D. 

Thus it can be concluded that the new principle proposed in this section unifies the 
minimum principles of potential and complementary energies. 
Next, let’s consider the strong form of ( ) 0=!"

it
u . 

Now it is given by 

( ) 0=!"!"!"#!$+!#$ %%%%
$ uS

ii
S

ii
V

ii
V

ijijijij dStudSutdVupdV  

This equation is further transformed using the divergence theorem as follows: 

( ) ( ) ( ) 0
,,

=!"#!+"#!#+!# $$$$
" V

ijij
V

iijij
S

iii
S

iii dVudVupdStuudSutt
u

 (17) 

The last volume integral is physically interpreted as the complementary virtual work of 
jij,

!"  (virtual body force due to some physical actions such as heat conduction, fluid flow, 
electromagnetism and so on). 
And therefore in case of pure mechanics problem, it may by deleted. 

( ) ( ) ( ) 0
,

=!+"#!#+!#$ %%%
" V

iijij
S

iii
S

iii dVupdStuudSutt
u

 (18) 

 
4. Correlation study of a new variational principle derived and other existing 
principles. 
It should be mentioned here that the author derived previously the following variational 
equation generalizing the principle of virtual work with the use of Lagrange multiplier: 

( ) ( ) ( ) 0
,

=!+"#!##!# $$$
" V

iijij
S

iii
S

iii dVupdStuudSutt
u

 (19) 

This equation is the strong form of the following modified Hellinger-Reissner’s variational 
equation (4),(8) : 

( )
iiijiiijR uu !"=!"#$  smultiplier   Lagrangeand  ,w.r.t.0,,  

where ( ) ( )!!! "#""$
%
&

'
(
) "**"+*=#*,

* uS
iii

S
ii

V
iiklijijklijijiiijR dSuudSutdVupbu

2

1
,,  (20) 

That is, eq (20) is reduced to eq (19) if ij
!  and 

i
!  are related with 

i
u  by eqs (2) and 

ii
t=! . 

It is surprising to note that difference of eqs (18) and (19) is only sign of the second term of 
both equations, but eq (18) can give always the lower bound solution, while eq (19) can give 
only stationary solutions. 
It should be also emphasized here that eq (18) is derived without introducing Lagrange 
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multiplier, and therefore it can guarantee the minimum property of ( )
it
u!  while 

( ) 0, =!"# iijR u , the strong form of which is given by eq (19) is only a stationary principle. 
The followings are conclusion of this section: 
(i) ( ) 0=!"

ip
u  gives the upper bound solution in linear elasticity problems. 

(ii) ( ) ( ) ( )! ""#=#
uS

iiiipit dstuuuu  (21) 

( ) 0=!"
it
u  can give the lower bound solutions. 

(iii) ( ) ( ) ( )! "+#=#
uS

iiiipiHR dstuuuu  (22) 

( ) 0=!"
iHR
u gives only the stationary solutions. 

 
5. Eight possible methods of solution on the elasticity problems 
In general the true solution of the boundary value problem of elasticity must satisfy the 
following three conditions: 

!
"

!
#

$

=

=

=+%

%Stt

Suu

Vp

ii

uii

ijij

on :conditionsboundary  stress (c)

on:conditionsboundary nt displaceme b)(

in0:condition mequilibriu (a) ,

 (23) 

Considering possible combination of above three conditions, 8 different variational 
equations can be proposed for the approximate solution as shown in Fig 3 and Table 1. 
For instance, in case of Rayleigh-Ritz method which is the second method of solution in 
Table 1, the displacement functions 

i
u  for a given entire field is usually assumed in the 

form of truncated polynomials of coordinate variables 
i
x  and the displacement boundary 

condition must be satisfied a priori. Using such a displacement function the total potential 
energy ( )

ip
u!  is computed, and it is generally given by a quadratic function of the 

unknown constants 
k
a  of the assumed displacement function. 

Then final linear equation of 
k
a  to be solved can be obtained by computing 0=

!

"!

k
a

. 

It should be mentioned here that the first and fifth methods of solution do not require both 
displacement and stress boundary conditions a priori. This makes the analysis much easier to 
compare the other 6 methods. 
 
6. Conclusions 
Using divergence theorem in elasticity, a new variational principle is proposed on the 
minimum condition of the total energy of a given system. 
In this paper, the minimum principles of potential energy and complementary energy are 
unified without using Lagrange multiplier and therefore the minimum condition of the total 
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energy is guaranteed. 
Consequently, the lower bound solutions can be always obtained. In the subsequent series of 
articles, the lower bound solutions will be obtained on a set of different elasticity problems 
using several methods among 8 classified methods of solution. 
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equilibrium equation: 
Vpijij in0, =+!  

displacement b.c.:     
uii
Suu on=  

stress b.c.:           
!

= Stt
ii

on  

where jiji
nt !=  

u
S : displacement prescribed condition 
!
S :stress prescribed condition 

!
+= SSS

u
 

 

Fig. 1 Boundary value problem of 2D elasticity 
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Fig.2 Process for proposing the unified principle of virtual work and

complementary virtual work
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divergence theorem in solid mechanics
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unified principle of virtual and complementary work

principle of virtual work principle of complementary virtual work
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remarks: 

MHR Method: Modified Hellinger-Reissner Method 
DM: Displacement Method 
EM: Equilibrium Method or Force Method 
GM: Galerkin Method 
FEM is mainly based on DM(I), while Pian’s Mixed Method covers DM(II) and EM(II), 
GM(II) is semi-analytical method of solution. 

 
Fig. 3   8 possible methods of solution on solid mechanics problems 
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(i) equilibrium condition: 

(ii) displacement boundary condition:

(iii) stress boundary condition:
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where

NO YESis assumed so as
to satisfy

satisfy further satisfy further

MHR Method

(1)

DM(I)

(2)

EM(I)

(3)

GM(I)

(4)

Trefftz method

(5)

DM(II)

(6)

EM(II)

(7)

GM(II)

(8)
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sol. 
No. variational equations 

constraint 
conditions remarks 

1 
( ) ( )

( ) 0
,

=!+"#

!#+!#

$
$$

"

V
iijij

S
iii

S
iii

dVup

dStuudSutt
u  

 general method 
including other 

7 methods 

2 ( ) ( ) 0
,

=!+"#!# $$
" V

iijij
S

iii dVupdSutt  uii
Suu on0=!  DM(I) 

3 ( ) ( ) 0
,

=!+"#!# $$
" V

iijij
S

iii dVupdSutt  !
=" Stt

ii
on0  EM(I) 

4 ( ) 0
,

=!+"#V iijij dVup  
uii
Suu on0=!  
!

=" Stt
ii

on0  GM (I) 

5 ( ) ( ) 0=!"+!" ##
$ uS

iii
S

iii
dStuudSutt  Vpijij in0, =+!  Trefftz’s 

method 

6 ( ) 0=!"#
$S

iii
dSutt  

Vpijij in0, =+!  
uii
Suu on0=!  DM(II) 

7 ( ) 0=!"#
uS

iii
dStuu  

Vpijij in0, =+!  
!

=" Stt
ii

on0  EM(II) 

8 

 Vpijij in0, =+!  
!

=" Stt
ii

on0  
uii
Suu on0=!  

GM(II) 
analytical 
solution 

 
remarks: 

DM: Displacement Method 
EM: Equilibrium Method 
GM: Galerkin Method 
(I) 

i
u  does not satisfy 0

,
=+!

ijij
p  a priori 

(II)  
i
u  satisfies 0

,
=+!

ijij
p  a priori 

 

Table 1  8 possible methods of solution derived by the present variational formulation 
 
 


