Stress distribution on section C-C' of a perforated square plate under uniaxial uniform loading

Analysis of torsional rigidity of an elastic bar with the square cross section(divided by square mesh)

у | а

0

-а

<u>a</u> x

Mesh	2nd order	Mesh	3rd order
Div.	polynomial	Div.	polynomial
2x 2	0.17708	3x 3	0.1395
4x 4	0.16498	4 x4	0.1396
6x 6	0.15456	5x 5	0.13984
8x 8	0.14921	6x 6	0.14002
10x 10	0.14635	7x 7	0.14014
12 x12	0.14469	8x 8	0.1402.
14x 14	0.14365	9x 9	0.1403
16x 16	0.14295	10x 10	0.1403
18 x18	0.14247	11x 11	0.1403
20x 20	0.14211	12x 12	0.1404
22x 22	0.14185	13x 13	0.14044
	Timoshenko I	K=0.1406(2	$(2a)^4$

2

Inplane bending analysis of a cantilever plate subjected to a boundary shear of parabolic distribution (divided by square mesh)

Finite element bending analysis of a square plate under uniformly distributed load using the newly proposed variational method.

Nonequilibrium 10th order polynomials of (x,y) were used for analysis.

Central deflection	W	0,0)
--------------------	---	-----	---

Mesh Div NDOF	w(0,0)	w/w _{exact}
2 2 66	1.0059	1.27247
3 3 66	1.0014	1.26676
4 4 66	1.0014	1.26675
5566	1.0006	1.26576
6 6 66	1.0007	1.26587
7766	1.0004	1.26555
8866	1.0000	1.26524
9966	1.0000	1.26502
10 10 66	1.0000	1.26531
11 11 66	1.0000	1.26531

4

先端に垂直せん断力を受ける片持矩形板の面内曲 げ問題のTK解析

CST要素を用いた有限要素解とTimoshenko解の比較

平衡法(FM)解と100項近似のTKFMとTKDM解の比較

解析解的手法(解法8)を除いた7つの解法の解の比較

A点の引張応力s_xの計算値の比較

DOF	TK1	DOF	TK2	DOF	TK3	DOF	TK4	DOF	TK5	DOF	TK6	DOF	TK7
10		6	91.49	10	83.51	3	55.67	8		4	90.82	20	93.75
18	77.22	12	80.16	16	92.89	7	77.42	12	78.16	6	87.81	28	87.50
28	80.30	20	86.12	24	81.52	13	90.72	16	87.28	8	82.74	40	86.21
40	83.91	30	86.55	34	88.32	21	82.92	20	83.44	10	87.46	52	85.84
54	87.40	42	85.56	46	84.45	31	87.67	24	91.11	12	85.39	64	85.72
70	86.48	56	86.12	60	86.62	43	84.88	28	85.86	14	86.05	76	85.70
88	85.78	72	85.78	76	85.18	57	86.50	32	86.74	16	85.89		
108	85.29	90	85.97					36	86.07	18	85.83		
154	86.01	110	85.87					40	86.00	20	85.95		
								60	85.94	30	85.93		
								80	85.88	40			

一方向に一様分布引張荷重を受ける有孔正方形板の 応力集中解析(C-C'断面)

ー軸引張を受ける有孔正方形板の応力及び 変位の計算値の収束性

D.O.F	$(\sigma_x)_{\max}/S$	<i>U</i> _A	u_B		
17	3.351535	0.3048718	0.1682909		
21	3.358187	0.3054907	0.1686762		C
25	3.359322	0.3061321	0.1687509		Ç
29	3.359656	0.3066006	0.1687975		(-
33	3.360086	0.3064086	0.1687917		
37	3.360099	0.3063427	0.1687925	La - L	
41	3.360115	0.3064508	0.1687930		
	D.O.F 17 21 25 29 33 37 41	D.O.F $(\sigma_x)_{max}/S$ 173.351535213.358187253.359322293.359656333.360086373.360099413.360115	D.O.F $(\sigma_x)_{max}/S$ u_A 173.3515350.3048718213.3581870.3054907253.3593220.3061321293.3596560.3066006333.3600860.3064086373.3600990.3063427413.3601150.3064508	D.O.F $(\sigma_x)_{max}/S$ u_A u_B 17 3.351535 0.3048718 0.1682909 21 3.358187 0.3054907 0.1686762 25 3.359322 0.3061321 0.1687509 29 3.359656 0.3066006 0.1687975 33 3.360086 0.3064086 0.1687917 37 3.360099 0.3063427 0.1687925 41 3.360115 0.3064508 0.1687930	D.O.F $(\sigma_x)_{max}/S$ u_A u_B 173.3515350.30487180.1682909213.3581870.30549070.1686762253.3593220.30613210.1687509293.3596560.30660060.1687975333.3600860.30640860.1687917373.3600990.30634270.1687925413.3601150.30645080.1687930

A

S

PSP-10/10

通常のメッシュ分割によるTK法の計算結果

